
ROS and Gazebo
Iot Lab Course

What we’re going to use in this course

Installation Instructions for ROS:

Linux:
● sudo apt install ros-humble-desktop

For MacOS and Windows refer to the website for the full
installation instructions:

● https://docs.ros.org/en/humble/Installation.html

NOTE: While Windows is perfectly compatible with ROS,
everything we will see for the project will use commands
only compatible with Linux and Mac based OS, so it is
highly recommended to install a VM if you only have
Windows on your PC.

Robot Operating System - ROS

● The Robot Operating System (ROS) is a set of software
libraries and tools that help you build robot
applications.

● ROS offers a standard software platform to developers
across industries that will carry them from research and
prototyping all the way through to deployment and
production.

● Allows the developer to implement more easily robot
solutions without the hassle of handling multiple
dependencies and different standards.

Why ROS?

● Global Community
● Proven in Use
● Multi-domain
● Multi-platform (sigh)
● Open Source
● Commercial Friendly
● Shortens time to deploy a

new solution

ROS Graph

● The ROS graph is a network of ROS 2
elements processing data together at one
time

● It encompasses all executables and the
connections between them if you were to
map them all out and visualize them.

● Each node in ROS should be responsible
for a single, module purpose (e.g. one
node for controlling wheel motors, one
node for controlling a laser range-finder,
etc).

● Each node can send and receive data to
other nodes via topics, services, actions, or
parameters.

Topics

● Topics are a vital element of the ROS
graph that act as a bus for nodes to
exchange messages.

● Topics are one of the main ways in which
data is moved between nodes and
therefore between different parts of the
system.

● A node may publish data to any number of
topics and simultaneously have
subscriptions to any number of topics.

Services

● Services are another method of
communication for nodes in the ROS
graph.

● Services are based on a call-and-response
model, versus topics’ publisher-subscriber
model.

● While topics allow nodes to subscribe to
data streams and get continual updates,
services only provide data when they are
specifically called by a client.

Parameters

● A parameter is a configuration value
of a node. You can think of
parameters as node settings.

● A node can store parameters as
integers, floats, booleans, strings,
and lists.

● In ROS 2, each node maintains its
own parameters.

Actions

● Actions are one of the communication
types in ROS 2 and are intended for long
running tasks.

● They consist of three parts: a goal,
feedback, and a result.

● Actions are built on topics and services.
● Their functionality is similar to services,

except actions can be canceled.
● They also provide steady feedback, as

opposed to services which return a single
response.

● Actions use a client-server model, similar
to the publisher-subscriber model.

● An “action client” node sends a goal to an
“action server” node that acknowledges the
goal and returns a stream of feedback and
a result.

How would you structure a ROS drone like this?
Nodes:

● A node for the main body.
● One node for each motor (for a total of four).
● A node for the camera.

Topics:

● One topic where motors are subscribed, where
messages to move them can be published.

● One topic for the camera to publish the image feed.
● Battery-related topic: where the status of the battery

is published (the battery itself may be another node).

Services:

● Take-off service. Which allows the drone to lift from
the ground.

● Land service. Which does the opposite.

More?
There is no “right” solution, it’s all about implementation.

